Role for cyclooxygenase 2 in the development and maintenance of neuropathic pain and spinal glial activation.
نویسندگان
چکیده
BACKGROUND Lines of evidence have indicated that cyclooxygenase 2 plays a role in the pathophysiology of neuropathic pain. However, the site and mechanism of its action are still unclear. Spinal glia has also been reported to mediate pathologic pain states. The authors evaluated the effect of continuous intrathecal or systemic cyclooxygenase-2 inhibitor on the development and maintenance of neuropathic pain and glial activation in a spinal nerve ligation model of rats. METHODS Continuous intrathecal infusion of meloxicam (32 or 320 mug . kg . day) or saline was started immediately after L5-L6 spinal nerve ligation. Mechanical allodynia and thermal hyperalgesia were evaluated on days 4 and 7 postoperatively. Spinal astrocytic activation was evaluated with glial fibrially acidic protein immunoreactivity on day 7. In other groups of rats, continuous intrathecal meloxicam was started 7 days after spinal nerve ligation, and effects on established neuropathic pain and glial activation were evaluated. Last, effects of continuous systemic meloxicam (16 mg . kg . day) on existing neuropathic pain and glial activation were examined. RESULTS Intrathecal meloxicam prevented the development of mechanical allodynia and thermal hyperalgesia induced by spinal nerve ligation. It also inhibited spinal glial activation responses. In contrast, when started 7 days after the nerve ligation, intrathecal meloxicam did not reverse established neuropathic pain and glial activation. Systemic meloxicam started 7 days after ligation partially reversed neuropathic behaviors but not glial activation. CONCLUSIONS Spinal cyclooxygenase 2 mediates the development but not the maintenance of neuropathic pain and glial activation in rats. Peripheral cyclooxygenase 2 plays a part in the maintenance of neuropathic pain.
منابع مشابه
نقش سلولهای گلیا در ایجاد دردهای نوروپاتی و بروز پدیده تحمل / پردردی اپیوئیدها
Common cellular and molecular mechanisms are not only involved in the development of neuropathic pain caused by neurological damage but also in the occurrence of the tolerance/hyperalgesia phenomenon caused by chronic use of opioids. It seems that the activation of the neuroimmune system in the brain and spinal cord is one of the most important mechanisms involved in the initiation and mainte...
متن کاملMicroinfusion of TNFα and its antibody into locus coeruleus modifies nerve injury induced thermal hyperalgesia and mechanical allodynia
Introduction: Glial activation and secretion of cytokines at the spinal level is known as part of chronic pain pathogenesis. Although changes in TNFα at the supraspinal level are reported during chronic pain, its exact role and site of action remain to be elucidated. We investigated the effect of microinfusion of TNFα into the LC in a rat model of neuropathic pain. Methods: Male Wistar rats...
متن کاملCyclooxygense-1 inhibition delays hypersensitivity to nerve injury
Despite the important role of both cyclooxygenase (COX) isoforms (i.e. COX-1 and COX-2) in maintenance of hypersensitivity following peripheral nerve injury, their role in the development of neuropathic pain is not clear. The present study was undertaken to determine the effect of COX inhibitors to address the potential role of COX isozymes in the development of neuropathic pain in rats after c...
متن کاملMinocycline Effects on IL-6 Concentration in Macrophage and Microglial Cells in a Rat Model of Neuropathic Pain
Background: Evidence indicates that neuropathic pain pathogenesis is not confined to changes in the activity of neuronal systems but involves interactions between neurons, inflammatory immune and immune-like glial cells. Substances released from immune cells during inflammation play an important role in development and maintenance of neuropathic pain. It has been found that minocycline suppress...
متن کاملCyclooxygense-1 inhibition delays hypersensitivity to nerve injury
Despite the important role of both cyclooxygenase (COX) isoforms (i.e. COX-1 and COX-2) in maintenance of hypersensitivity following peripheral nerve injury, their role in the development of neuropathic pain is not clear. The present study was undertaken to determine the effect of COX inhibitors to address the potential role of COX isozymes in the development of neuropathic pain in rats after c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anesthesiology
دوره 103 4 شماره
صفحات -
تاریخ انتشار 2005